

The Geochemistry and Geochronology of Cassiterite from the New England Fold Belt, NSW

Jennifer Prichard

The Project:

- Can cassiterite be used to characterize
 hydrothermal systems in a way similar to zircon?
- A case study from the tin mineralized Mole Granite in the New England Fold Belt, NSW.
- Geochemistry
 Oxygen isotopes
 Trace elements
- Geochronology
 U/Pb dating

Cassiterite

- SnO_2 contains 78.77 wt. % tin.
- Tin is used in solder, as tin plate to prevent rusting.
- Typically formed in Ilmenite series granites.
- Reduced fluids facilitate the movement of Sn^{4+} as a chloride complex.
- Australia one of the world's largest tin producers in the 80's.

Aims

- Characterize the timeframe of cassiterite mineralization
- Determine the oxygen isotopic variation
- Determine the trace element pattern variation of cassiterites
- Characterize zonation and alteration intragranularly
- Assess the Yankee cassiterite

The Mole Granite

Analytical Methods

- SEM-Cathodoluminescence
- Laser Ablation-ICP-MS
 - $^{238}\text{U}/^{206}\text{Pb}$ dating
 - Trace elements
- ➢ SHRIMP SI
 - Oxygen isotopes

Results: SEM CL Imaging

WD17.5mm 20.0kV x40 1mm

WD17.6mm 20.0kV x40 1.mm WD22.1mm 15.0kV x35

Results: U/Pb Dating

٠

•

٠

٠

•

٠

△ Mole Granite Emmaville 🔘 243 ± 2 Elsemore [©] Newstead 236 ± 3 New South Wales 213 ± 12 Gundle Euriowie
 411 ± 3 ^(a) Tullebung 420 ± 3 Gibsonvale
 Gibsonvale: MSWD = 1.5, n = 17Tullebung: MSWD = 2.2, n = 17Gundle: MSWD = 0.1, n = 2Elsemore: MSWD = 1.1, n = 15Newstead: MSWD = 0.6, n = 7Emmaville: MSWD = 1.3, n = 27

• The Mole Granite (based on Taronga): MSWD = 1.6, n = 8

Results: Oxygen Isotopes

$\delta 180$ of cassiterite

$\delta 180$ of quartz

Fractionation_(Quartz-Cassiterite) Equation:

$$10^{3} \ln \alpha = A \times 10^{6} / T^{2} + B \times 10^{3} / T + C$$

Where: $\alpha = \frac{\delta^{18}O_{Quartz} (\%) + 1000}{\delta^{18}O_{Cassiterite} (\%) + 1000}$, A = 0.56, B = 5.80, C=-3.04 and T = Temperature (K)

(Zheng, 1991)

Adapted from Kleeman & Plimer, 1991.

Adapted from Kleeman & Plimer, 1991.

Adapted from Kleeman & Plimer, 1991.

Results: Trace elements

Cassiterite 'Fingerprinting'

Red dashed line is the range of cassiterite from Greenbushes, WA.

Results: intra-granular

Wallaroo Transect Normalised to Yankee

Yankee Cassiterite: a Possible Standard?

Oxygen isotope variation

Location	Min (‰)	Max (‰)	Range (‰)	n (Analyses)	n (Grains)
Yankee	-17.24	-10.36	6.88	21	5
Elsemore	-11.63	-9.17	2.46	45	15
Tullebung	-9.14	-5.62	3.52	38	19
Newstead	-11.13	-8.23	2.90	18	5
Gibsonvale	-13.18	-3.58	9.60	25	7
Emmaville	-13.51	-7.41	6.10	42	12
Wallaroo	-19.50	-16.82	2.68	17	3
Taronga	-11.13	-7.30	3.82	20	5

Trace element variation

	All Yankee Grains			Single Yankee grain		
	Min (ppm)	Max (ppm)	Range (ppm)	Min (ppm)	Max (ppm)	Range (ppm)
n (alalyses)		49			6	
Al	9.23	104.62	95.39	11.56	72.7	61.14
Si	563	2429	1866	1632	2345	713
Р	7.51	45.00	37.49	7.60	10.20	2.60
Sc	45	1454	1409	45	729	684
Ti	0.86	4033	4032	126.3	1682	1555
Cu	0.003	0.242	0.24	b.d.l.	b.d.1	b.d.l.
Zn	0.001	2.680	2.68	0.134	0.444	0.310
Zr	0.0081	131.2	131.2	2.42	49.7	47.28
Nb	0.0231	5325	5325	11.47	3946	3935
Cd	0.017	0.059	0.04	b.d.l.	b.d.l.	b.d.l.
In	2.01	56.3	54.29	3.05	29.22	26.17
Sb	20.74	1555	1534	27.71	156.8	129.1
Hf	b.d.l.	7.87	b.d.l.	0.05	2.22	2.18
Ta	0.002	173.5	173.5	0.012	62.85	62.8
W	5.34	12370	12365	6.58	12370	12363
Pb	0.160	9.72	9.56	0.867	3.52	2.66
Th	0.000	0.379	0.379	0.002	0.002	b.d.l.
U	2.64	568.8	566.2	2.64	80.82	78.18

Conclusions

- Cassiterite can be successfully dated by U/Pb isotopes using the LA-ICP-MS method.
- Oxygen isotopes provide a useful insight into mineralization temperatures in tin deposits.
- Trace element data provides a way to distinguish cassiterites from different formation environments.
- Cassiterite displays complex and useful textures intra-granularly, similar to that of zircon.
- The Yankee cassiterite is too heterogeneous to be a standard, however Elsemore cassiterite appears suitable.